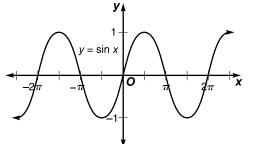


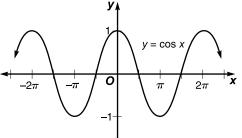
NAME

Study Guide

Graphing Sine and Cosine Functions

If the values of a function are the same for each given interval of the domain, the function is said to be **periodic**. Consider the graphs of $y = \sin x$ and $y = \cos x$ shown below. Notice that for both graphs the period is 2π and the range is from -1 to 1, inclusive.





Properties of the Graph of $y = \sin x$	Properties of the Graph of $y = \cos x$
The <i>x</i> -intercepts are located at πn , where <i>n</i> is an integer.	The <i>x</i> -intercepts are located at $\frac{\pi}{2} + \pi n$, where <i>n</i> is an integer.
The <i>y</i> -intercept is 0.	The <i>y</i> -intercept is 1.
The maximum values are $y = 1$ and occur when $x = \frac{\pi}{2} + 2\pi n$, when <i>n</i> is an integer.	The maximum values are $y = 1$ and occur when $x = \pi n$, where <i>n</i> is an even integer.
The minimum values are $y = -1$ and occur when $x = \frac{3\pi}{2} + 2\pi n$, where <i>n</i> is an integer.	The minimum values are $y = -1$ and occur when $x = \pi n$, where <i>n</i> is an odd integer.

Find $\sin \frac{7\pi}{2}$ by referring to the graph of the sine Example 1 function.

The period of the sine function is 2π . Since $\frac{7\pi}{2} > 2\pi$, rewrite $\frac{7\pi}{2}$ as a sum involving 2π .

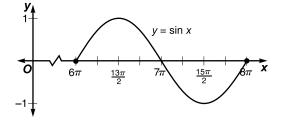
$$\frac{7\pi}{2} = 2\pi(1) + \frac{3\pi}{2}$$
 This is a form of $\frac{3\pi}{2} + 2\pi n$
So, $\sin \frac{7\pi}{2} = \sin \frac{3\pi}{2}$ or -1 .

Example 2 Find the values of θ for which $\cos \theta = 0$ is true.

Since $\cos \theta = 0$ indicates the *x*-intercepts of the cosine function, $\cos \theta = 0$ if $\theta = \frac{\pi}{2} + \pi n$, where *n* is an integer.

Example 3 Graph $y = \sin x$ for $6\pi \le x \le 8\pi$.

The graph crosses the x-axis at 6π . 7π , and 8π . Its maximum value of 1 is at $x = \frac{13\pi}{2}$, and its minimum value of -1 is at $x = \frac{15\pi}{2}$. Use this information to sketch the graph.



Practice

NAME

Graphing Sine and Cosine Functions

Find each value by referring to the graph of the sine or the cosine function.

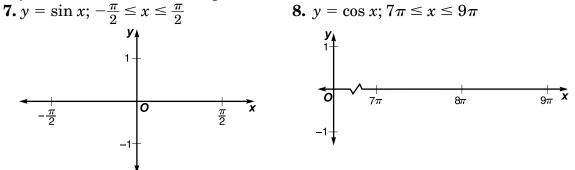
1. $\cos \pi$

2. $\sin \frac{3\pi}{2}$

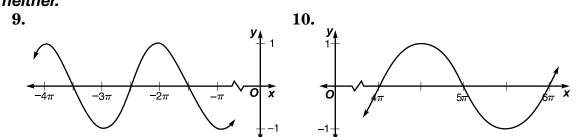
3.
$$\sin\left(-\frac{7\pi}{2}\right)$$

Find the values of θ for which each equation is true. **4.** sin $\theta = 0$ 5. $\cos \theta = 1$ 6. $\cos \theta = -1$

Graph each function for the given interval.



Determine whether each graph is $y = \sin x$, $y = \cos x$, or neither.



11. *Meteorology* The equation $y = 70.5 + 19.5 \sin \left[\frac{\pi}{6}(t-4)\right]$ models the average monthly temperature for Phoenix, Arizona, in degrees Fahrenheit. In this equation, *t* denotes the number of months, with t = 1 representing January. What is the average monthly temperature for July?