Lesson 6-5

Example 1

State the phase shift for each function. Then graph the function.

a. $y = \sin(2\theta + \pi)$

The phase shift of the function is $-\frac{c}{k}$ or $-\frac{\pi}{2}$.

To graph $y = \sin (2\theta + \pi)$, consider the graph of $y = \sin 2\theta$. Graph this function and then shift the graph $-\frac{\pi}{2}$.

b. $y = \cos(\theta - \pi)$

The phase shift of the function is $-\frac{c}{k}$ or $-\frac{-\pi}{1}$, which equals π .

To graph $y = \cos (\theta - \pi)$, consider the graph of $y = \cos \theta$ and then shift the graph π .

.....

Example 2

State the vertical shift and the equation of the midline for the function $y = 3 \cos \theta + 4$. Then graph the function.

The vertical shift is 4 units upward. The midline is the graph y = 4.

To graph the function, draw the midline, the graph of y = 4. Since the amplitude of the function is 3, draw dashed lines parallel to the midline which are 3 units above and below the midline. Then draw the cosine curve.

.....

Example 3

State the amplitude, period, phase shift, and vertical shift for $y = 2 \cos \frac{1}{2} + \pi 2 + 3$.

The amplitude is |2| or 2. The period is $\frac{2\pi}{\frac{1}{2}}$ or 4π . The phase shift is $-\frac{\pi}{\frac{1}{2}}$ or -2π . The vertical shift is +3.

Example 4

TIDES The equation that models the tides off the coast of a city on the east coast of the United States is given by $h = 3.1 + 1.9 \sin \frac{1}{6.8}t - \frac{5.1\pi}{6.8}2$, where *t* represents the number of hours since midnight and *h* represents the height of the water. Draw a graph that models the cyclic nature of the tide.

The vertical shift is 3.1. Draw the midline y = 3.1. The amplitude is 1.9. Draw dashed lines parallel to and 1.9 units above and below the midline.

The period is $\frac{2\pi}{\frac{\pi}{6.8}}$ or 13.6. Draw the sine curve with a period of 13.6. Shift the graph $-\frac{\frac{-5.1\pi}{6.8}}{\frac{\pi}{6.8}}$ or 5.1 units.

Example 5

Write an equation of a sine function with amplitude 5, period 3π , phase shift $\frac{\pi}{2}$, and vertical shift 2.

The form of the equation will be $y = A \sin(k\theta + c) + h$. Find the values of A, k, c, and h.

A:
$$|A| = 5$$

 $A = 5 \text{ or } -5$
k: $\frac{2\pi}{k} = 3\pi$ The period is 3π .
 $k = \frac{2}{3}$
c: $-\frac{c}{k} = \frac{\pi}{2}$ The phase shift is $\frac{\pi}{2}$.
 $-\frac{c}{\frac{2}{3}} = \frac{\pi}{2}$ $k = \frac{2}{3}$
 $c = -\frac{\pi}{3}$

h: h = 2

Substitute these values into the general equation. The possible equations are $y = 5 \sin \frac{12}{3}\theta - \frac{\pi}{3}2 + 2 \text{ or } y = -5 \sin \frac{12}{3}\theta - \frac{\pi}{3}2 + 2.$

.....

Chapter 6

Example 6

Graph $y = x + \sin x$.

First graph y = x and $y = \sin x$ on the same axes. Then add the corresponding ordinates of the functions. Finally, sketch the graph.

X	sin x	<i>x</i> + sin <i>x</i>
0	0	0
<u>π</u> 2	1	$rac{\pi}{2}$ + 1 $pprox$ 2.57
π	0	$\pi\approx 3.14$
<u>3π</u> 2	-1	$rac{3\pi}{2}$ - 1 $pprox$ 3.71
2π	0	$2\pi\approx 6.28$
<u>5π</u> 2	1	$\frac{5\pi}{2} + 1 \approx 8.85$
3π	0	$3\pi\approx 9.42$

.....