File LibraryFile LibraryLesson 6-6

Example 1

METEOROLOGY The table contains the times that the sun rises and sets on the fifteenth of every month in Center City.

Let t = 1 represent January 15. Let t = 2 represent February 15. Let t = 3 represent March 15.

a. Write a function that models the hours of daylight for Center City.

:

b. Use your model to estimate the number of hours of daylight on May 30.

Month	Sunrise A.M.	Sunset P.M.	
January	7:15	5:55	
February	7:00	6:27	
March	6:45	6:43	
April	6:10	6:55	
May	5:45	7:10	
June	5:35	7:28	
July	5:50	7:30	
August	6:05	7:10	
September	6:20	6:40	
October	6:30	6:07	
November	6:50	5:45	
December	7:10	5:42	

a. First compute the amount of daylight for each day as a decimal value. Consider January 15.

First, write each time in 24-hour time. 7:15 A.M. = 7:15 5:55 P.M. = 5:55 + 12 or 17:55

Then change each time to a decimal rounded to the nearest hundredth.

$$7:15 = 7 + \frac{15}{60} \text{ or } 7.25$$
$$17:55 = 17 + \frac{55}{60} \text{ or } 17.92$$

On January 15, there will be 17.92 – 7.25 or 10.67 hours of daylight.

Similarly, the number of daylight hours can be determined for the fifteenth of each month.

Month	Jan	Feb	Mar	Apr	May	June
t	1	2	3	4	5	6
Hours of Daylight	10.67	11.45	11.97	12.75	13.42	13.89
Month	July	Aug	Sept	Oct	Nov	Dec
t	7	8	9	10	11	12
Hours of Daylight	13.67	13.09	12.34	11.62	10.92	10.53

Advanced Mathematical Concepts

The data can be modeled by a function of the form $y = A \sin(kt + c) + h$, where *t* is the time in months. First, find *A*, *h*, and *k*.

A:
$$A = \frac{13.89 - 10.53}{2}$$

$$= 1.68$$
A is half the difference between the most
daylight (13.89 h) and the least daylight (10.53 h).
h:
$$h = \frac{13.89 + 10.53}{2}$$

$$= 12.21$$
h is half the sum of the greatest value and
the least value.
k: $\frac{2\pi}{k} = 12$

$$k = \frac{\pi}{6}$$
The period is 12.

Substitute these values into the general form of the sinusoidal function.

 $y = A \sin (kt + c) + h$ $y = 1.68 \sin \frac{\pi}{6}t + c^2 + 12.21 \qquad A = 1.68, \ k = \frac{\pi}{6}, \ h = 12$

To compute *c*, substitute one of the coordinate pairs, (t, y), into the function. Using the pair (1, 10.67) and a calculator will yield $c \approx -1.683257242$.

The function $y = 1.68 \sin 1\frac{\pi}{6}t - 1.682 + 12.21$ is one model for the daylight in Center City.

b. To find the amount of daylight on May 30, use t = 5.5 because May 30 is half a month past May 15, which is represented by t = 5.

$$y = 1.68 \sin \frac{1\pi}{6}t - 1.682 + 12.21$$
$$y = 1.68 \sin \frac{\pi}{6}(5.5) - 1.68 - 12.21$$
$$y \approx 13.78$$

On May 30, Center City will have about 13.78 hours of daylight.

.....

Example 2

ZOOLOGY In predator-prey situations, the number of animals in each category tends to vary periodically. A certain region has pumas as predators and deer as prey. The number of pumas varies with time according to the function $P = 500 + 200 \sin 0.4(t - 2)$, and the number of deer varies according to the function $D = 1500 + 400 \sin 0.4t$, with time, *t*, in years. Use the functions to determine how many pumas and deer there will be in the region in 15 years.

Pumas: Evaluate the function $P = 500 + 200 \sin 0.4(t - 2)$ for t = 15. $P = 500 + 200 \sin 0.4(15 - 2)$ $P = 500 + 200 \sin 0.4(13)$ P = 323.31There will be about 323 pumas in the region in 15 years. Deer: Evaluate the function $D = 1500 + 400 \sin 0.4t$ for t = 15. $D = 1500 + 400 \sin 0.4(15)$ D = 1388.23There will be about 1,388 deer in the region in 15 years.

.....