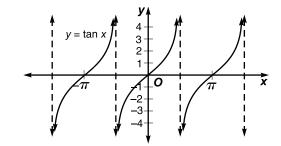
Study Guide

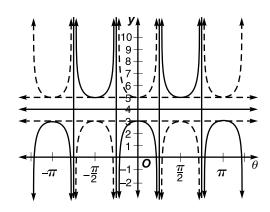

Graphing Other Trigonometric Functions

The period of functions $y = \csc k\theta$ and $y = \sec k\theta$ is $\frac{2\pi}{k}$, where k > 0. The period of functions $y = \tan k\theta$ and $y = \cot k\theta$ is $\frac{\pi}{k}$, where k > 0. The phase shift and vertical shift work the same way for all trigonometric functions. For example, the phase shift of the function $y = \tan (k\theta + c) + h$ is $-\frac{c}{k}$, and its vertical shift is h.

Example 1 Graph $y = \tan x$.

To graph $y = \tan x$, first draw the asymptotes located at $x = \frac{\pi}{2}n$, where n is an odd integer. Then plot the following coordinate pairs and draw the curves.

$$\left(-\frac{5\pi}{4}, -1\right), (-\pi, 0), \left(-\frac{3\pi}{4}, 1\right), \left(-\frac{\pi}{4}, -1\right), (0, 0), \left(\frac{\pi}{4}, 1\right), \left(\frac{3\pi}{4}, -1\right), (\pi, 0), \left(\frac{5\pi}{4}, 1\right)$$


Notice that the range values for the interval $-\frac{3\pi}{2} \le x \le -\frac{\pi}{2}$ repeat for the intervals $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$. So, the tangent function is a periodic function with a period of $\frac{\pi}{k}$ or π .

Example 2 Graph $y = \sec (2\theta + \pi) + 4$.

Since k=2, the period is $\frac{2\pi}{2}$ or π . Since $c=\pi$, the phase shift is $-\frac{\pi}{2}$. The vertical shift is 4.

Using this information, follow the steps for graphing a secant function.

- **Step 1** Draw the midline, which is the graph of y = 4.
- **Step 2** Draw dashed lines parallel to the midline, which are 1 unit above and below y = 4.
- **Step 3** Draw the secant curve with a period of π .
- **Step 4** Shift the graph $\frac{\pi}{2}$ units to the left.

243

Practice

Graphing Other Trigonometric Functions

Find each value by referring to the graphs of the trigonometric functions.

1.
$$\tan\left(-\frac{3\pi}{2}\right)$$

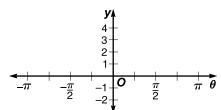
2.
$$\cot\left(\frac{3\pi}{2}\right)$$

3.
$$\sec 4\pi$$

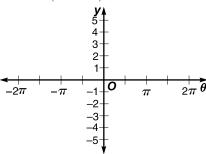
4.
$$\csc\left(-\frac{7\pi}{2}\right)$$

Find the values of θ for which each equation is true.

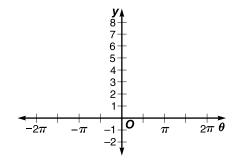
5.
$$\tan \theta = 0$$

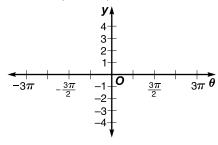

6.
$$\cot \theta = 0$$

7.
$$\csc \theta = 1$$


8.
$$\sec \theta = -1$$

Graph each function.


9.
$$y = \tan(2\theta + \pi) + 1$$


10.
$$y = \cot\left(\frac{\theta}{2} - \frac{\pi}{2}\right) - 2$$

11.
$$y = \csc \theta + 3$$

12.
$$y = \sec\left(\frac{\theta}{3} + \pi\right) - 1$$

