Lesson 6-7

Example 1

Find each value by referring to the graphs of the trigonometric functions.

a.
$$\tan \frac{11\pi}{4}$$

Since $\frac{11\pi}{4} = 2\pi + \frac{3\pi}{4}$, $\tan \frac{11\pi}{4} = -1$.

b. $\cot \frac{5\pi}{2}$

Since
$$\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$$
, $\cot \frac{5\pi}{2} = 0$

.....

Example 2

Find the values of θ for which each equation is true.

a. $\csc \theta = -1$

From the pattern of the cosecant function, $\csc \theta = -1$ if $\theta = \frac{3\pi}{2} + 2\pi n$, where *n* is an integer.

b. sec $\theta = 1$

From the pattern of the secant function, sec $\theta = 1$ if $\theta = \pi n$, where *n* is an even integer.

.....

Example 3

Graph
$$y = \csc 1\theta - \frac{\pi}{2}2 + 1$$
.

The period is
$$\frac{2\pi}{1}$$
 or 2π .

The phase shift is
$$-\frac{-\pi}{2}$$
 or $\frac{\pi}{2}$.

The vertical shift is 1. Use this information to graph the function.

Advanced Mathematical Concepts

Example 4

SECURITY A security camera scans a long, straight driveway that serves as an entrance to a house. Suppose a line is drawn down the center of the driveway. The camera is located 10 feet to the right of the midpoint of the line. Let *d* represent the distance along the line from its midpoint.

If t is time in seconds and the camera points at the midpoint at t = 0, then $d = 10 \tan \frac{\pi}{30} t^2$ models

the point being scanned.

- a. Graph the equation for $-15 \le t \le 15$.
- b. Find the location the camera is scanning at 12 seconds.
- **a.** The period is $\frac{\pi}{\frac{\pi}{30}}$ or 30. There are no

horizontal or vertical shifts. Draw the asymptotes at t = -15 and t = 15. Graph the equation.

b. To find the location the camera is scanning at 12 seconds, evaluate the equation at t = 12.

$$d = 10 \tan \frac{1}{30}t^{2}$$

$$d = 10 \tan \frac{\pi}{30}(12) \qquad t = 12$$

$$d \approx 30.77683537$$

The camera is scanning a point that is about 30.8 feet above the center of the driveway.

.....

Example 5

Write an equation for a secant function with period π , phase shift $-\frac{\pi}{2}$, and vertical shift 3.

The form of the equation will by $y = \sec(k\theta + c) + h$. Find the values of *k*, *c*, and *h*.

 $k: \quad \frac{2\pi}{k} = \pi$ k = 2 $c: \quad -\frac{c}{k} = -\frac{\pi}{2}$ $-\frac{c}{2} = -\frac{\pi}{2}$ $c = \pi$

h: h = 3

Substitute these values into the general equation. The equation is $y = \sec (2\theta + \pi) + 3$.