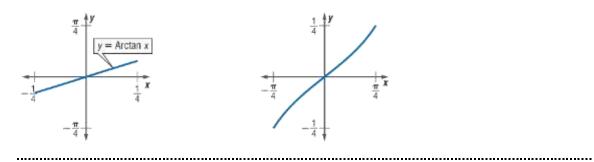
Advanced Mathematical Concepts


Lesson 6-8

Example 1

Write the inverse of y = Arctan 4x. Then graph the function and its inverse.

$y = \operatorname{Arctan} 4x$	
$x = \operatorname{Arctan} 4y$	Exchange x and y.
$\operatorname{Tan} x = 4y$	Definition of Arctan function
$\frac{1}{4}$ Tan $x = y$	Divide each side by 4.

Now graph the functions.

Example 2

Find each value.

a. Arcsin (-1) Let θ = Arcsin (-1).

$$\sin \theta = -1$$
$$\theta = -\frac{\pi}{2}$$

b. Sin⁻¹ (cos 2π) If $y = \cos 2\pi$, then y = 1.

 $\operatorname{Sin}^{-1}(\cos 2\pi) = \operatorname{Sin}^{-1} 1$ $= \frac{\pi}{2}$

Advanced Mathematical Concepts

c. $\sin (\operatorname{Tan}^{-1} 1 - \operatorname{Sin}^{-1} 0)$ Let $\alpha = \operatorname{Tan}^{-1} 1$ and $\beta = \operatorname{Sin}^{-1} 0$. Tan $\alpha = 1$ $\operatorname{Sin} \beta = 0$ $\alpha = \frac{\pi}{4}$ $\beta = 0$ $\sin (\operatorname{Tan}^{-1} 1 - \operatorname{Sin}^{-1} 0) = \sin(\alpha - \beta)$ $= \sin 1\frac{\pi}{4} - 02$ $= \frac{\sqrt{2}}{2}$

Example 3

Determine if $Sin^{-1}(sin x) = x$ is true or false for all values of x. If false, give a counterexample.

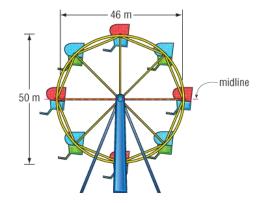
Try several values of x to see if we can find a counterexample.

When $x = \pi$, Sin⁻¹ (sin x) $\neq x$, so it is not true for all values of x.

X	sin x	Sin ⁻¹ (sin <i>x</i>)
0	0	0
<u>π</u> 2	1	$\frac{\pi}{2}$
π	0	0

.....

Example 4


ENTERTAINMENT A giant Ferris wheel has a height of 50 meters and a diameter of 46 meters. It makes a revolution every 4 minutes. Sue starts timing her ride at the midline point at exactly 10:00 A.M. as she is on her way up. At what time will she reach an altitude of 40 meters?

First, write an equation to model the height of a seat at any time *t*. Since the seat is at the midline point at t = 0, use the sine function $y = A \sin(kt + c) + h$. Find the values of *A*, *k*, *c*, and *h*.

A: The value of A is the radius of the Ferris wheel. $\frac{1}{2}$

$$A = \frac{1}{2}(46)$$
 or 23

- $k: \quad \frac{2\pi}{k} = 4$ $k = \frac{\pi}{2}$
- *c*: Since the seat is at the equilibrium point at t = 0, there is no phase shift and c = 0.

h: The bottom of the Ferris wheel is 50 - 46 or 4 meters above the ground. So, the value of *h* is 23 + 4 or 27.

Substitute these values into the general equation. The equation is $y = 23 \sin 1\frac{\pi}{2}t^2 + 27$. Now, solve the equation for 40.

$$40 = 23 \sin 1\frac{\pi}{2}t^2 + 27 \qquad Replace \ y \ with \ 40.$$

$$13 = 23 \sin 1\frac{\pi}{2}t^2 \qquad Subtract \ 27 \ from \ each \ side.$$

$$\frac{13}{23} = \sin 1\frac{\pi}{2}t^2 \qquad Divide \ each \ side \ by \ 23.$$

$$\sin^{-1} 1\frac{13}{23} = \frac{\pi}{2}t \qquad Definition \ of \ sin^{-1}$$

$$\frac{2}{\pi}\sin^{-1} 1\frac{13}{23} = t \qquad Multiply \ each \ side \ by \ \frac{2}{\pi}.$$

$$0.3824154301 = t \qquad Use \ a \ calculator.$$

Sue will reach an altitude of 40 meters about 0.38 minute after 10:00 A.M.

.....