File LibraryFile LibraryLesson 7-5

Example 1

Solve $\sqrt{3} \cos x + 2 \tan x \cos^2 x = 0$ for principal values of x. Express solutions in degrees.

.....

$$\sqrt{3}\cos x + 2\tan x \cos^2 x = 0$$

$$\sqrt{3}\cos x + 21\frac{\sin x}{\cos x}2\cos^2 x = 0$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sqrt{3}\cos x + 2\sin x \cos x = 0$$

$$\cos x (\sqrt{3} + 2\sin x) = 0$$

Factor.

$$\cos x = 0$$

$$x = 90^{\circ}$$

$$\sin x = -\frac{\sqrt{3}}{2}$$

$$x = -60^{\circ}$$

Example 2

Solve $\tan x \sin^2 x + \tan x \cos^2 x = \tan^2 x$ for $0 \le \pi \le 2\pi$.

This equation can be written in terms of tan *x* only.

 $\tan x \sin^2 x + \tan x \cos^2 x = \tan^2 x$ $\tan x (\sin^2 x + \cos^2 x) = \tan^2 x$ $\tan x (1) = \tan^2 x$ $\tan x (1) = \tan^2 x$ $\tan x - \tan^2 x = 0$ $\tan x (1 - \tan x) = 0$ $\tan x = 0$ $x = 0 \text{ or } x = \pi$ $\tan x = 1$ Factor.

$$x = \frac{\pi}{4} \text{ or } x = \frac{5\pi}{4}$$

The solutions are $0, \frac{\pi}{4}, \pi$, and $\frac{5\pi}{4}$.

.....

Chapter 7

Example 3

Solve $\cos^2 x \sin x - \frac{1}{2} \sin x + \cos^2 x - \frac{1}{2} = 0$ for all real values of x.

Use factoring to solve this equation.

$$\cos^{2} x \sin x - \frac{1}{2} \sin x + \cos^{2} x - \frac{1}{2} = 0$$

$$\sin x \ 1 \ \cos^{2} x - \frac{1}{2} 2 + \cos^{2} x - \frac{1}{2} = 0$$

$$1 \ \cos^{2} x - \frac{1}{2} 2(\sin x + 1) = 0$$

$$\cos^{2} x - \frac{1}{2} = 0$$

$$\cos^{2} x - \frac{1}{2} = 0$$

$$\cos^{2} x = \frac{1}{2}$$

$$\cos x = \pm \frac{\sqrt{2}}{2}$$

$$x = \frac{\pi}{4} + \frac{\pi}{2}k$$

The solutions are $\frac{\pi}{4} + \frac{\pi}{2}k$ and $\frac{3\pi}{2} + 2\pi k$.

.....

Example 4

If the range (horizontal distance traveled) *R* of a projectile is 10,000 m and the initial velocity v_0 is 500 m/s, find θ , the angle at which the projectile was launched, given that g = 9.8 m/s². The formula that relates the variables is $R = \frac{v_0^2 \sin 2\theta}{g}$.

 $R = \frac{v_0^2 \sin 2\theta}{g}$ $10,000 = \frac{(500)^2 \sin 2\theta}{9.8}$ Replace v₀ with 500 and g with 9.8. $0.392 = \sin 2\theta$ $2\theta = 23.079$ $\theta \approx 11.54 + 360^\circ k$

The least positive value for θ is obtained by letting k = 0. Therefore, $\theta \approx 11.54$.

.....

Example 5

Solve $2 \cos \theta - \sqrt{3} < 0$ for $0 \le \theta \le 2\pi$.

 $2 \cos \theta - \sqrt{3} < 0$ $2 \cos \theta < \sqrt{3}$ $\cos \theta < \frac{\sqrt{3}}{2}$ Solve for $\cos \theta$.

In terms of the unit circle, we need to find points with x-coordinates less than $\frac{\sqrt{3}}{2}$. The values of θ for which $\cos \theta < \frac{\sqrt{3}}{2}$ are $\frac{\pi}{6}$ and $\frac{11\pi}{6}$. The figure shows that the solution of the inequality is $\frac{\pi}{6} \le \theta \le \frac{11\pi}{6}$.

