Chapter 8

Lesson 8-2 Algebraic Vectors

Example 1

Write the ordered pair that represents the vector from X(-2, 4) to Y(4, -6). Then find the magnitude of \overline{XY} .

First, represent \overline{XY} as an ordered pair.

$$\overline{XY} = \langle 4 - (-2), -6 - 4 \rangle$$
 or $\langle 6, -10 \rangle$

Then, determine the magnitude of \overline{XY} .

$$|\overline{XY}| = \sqrt{(4 - (-2))^2 + (-6 - 4)^2}$$

= $\sqrt{136}$ or $2\sqrt{34}$

 \overline{XY} is represented by the ordered pair (6, -10) and has a magnitude of $2\sqrt{34}$ units.

Example 2

Let $\overline{m} = \langle 2, -3 \rangle$, $\overline{n} = \langle 1, 5 \rangle$, and $\overline{p} = \langle -2, 4 \rangle$. Find each of the following.

a.	$\vec{\mathbf{n}}$ + $\vec{\mathbf{p}}$	b. $\vec{\mathbf{m}} - \vec{\mathbf{p}}$	
	$\vec{\mathbf{n}} + \vec{\mathbf{p}} = \langle 1, 5 \rangle + \langle -2, 4 \rangle$ $= \langle 1 + (-2), 5 + 4 \rangle$ $= \langle -1, 9 \rangle$	$\vec{\mathbf{m}} \cdot \vec{\mathbf{p}} = \langle 2, -3 \rangle - \langle -2, 4 \rangle$ $= \langle 2 - (-2), -3 - 4 \rangle$ $= \langle 4, -7 \rangle$	
c.	$3\vec{n}$ $3\vec{n} = 3\langle 1, 5 \rangle$ $= \langle 3 \cdot 1, 3 \cdot 5 \rangle$ $= \langle 3, 15 \rangle$	d. $2\vec{m} + 3\vec{p}$ $2\vec{m} + 3\vec{p} = 2\langle 2, -3 \rangle + 3\langle -2, 4 \rangle$ $= \langle 4, -6 \rangle + \langle -6, 12 \rangle$ $= \langle -2, 6 \rangle$	

Example 3

EMERGENCY MEDICINE Two paramedics are moving a person on a stretcher. Bob is pushing the stretcher with a force of 120 Newtons at 50° with the horizontal, while Ed is pulling the stretcher with a force of 200 Newtons at 40° with the horizontal. What is the magnitude of the force exerted on the stretcher?

Draw a diagram of the situation. Let $\overline{\mathbf{G}_1}$ represent the force Bob exerts and let $\overline{\mathbf{G}_2}$ represent the force Ed exerts.

Write each vector as an ordered pair by finding its horizontal and vertical

components. Let $\overline{\mathbf{G}_{1x}}$ and $\overline{\mathbf{G}_{1y}}$ represent the *x* and *y* components of $\overline{\mathbf{G}_1}$ and let $\overline{\mathbf{G}_{2x}}$ and $\overline{\mathbf{G}_{2y}}$ represent the *x* and *y* components of $\overline{\mathbf{G}_2}$.

$$\cos 50^{\circ} = \frac{|\mathbf{G}_{1x}|}{120} \qquad \qquad \cos 40^{\circ} = \frac{|\mathbf{G}_{2x}|}{200}$$
$$|\mathbf{G}_{1x}| = 120 \cos 50^{\circ} \qquad \qquad |\mathbf{G}_{2x}| = 200 \cos 40^{\circ}$$
$$\approx 77.1 \qquad \qquad \approx 153.2$$
$$\sin 50^{\circ} = \frac{|\mathbf{G}_{1y}|}{120} \qquad \qquad \sin 40^{\circ} = \frac{|\mathbf{G}_{2y}|}{200}$$
$$|\mathbf{G}_{1y}| = 120 \sin 50^{\circ} \qquad \qquad |\mathbf{G}_{2y}| = 200 \sin 40^{\circ}$$

pprox 128.6

Find the sum of the vectors.

 ≈ 91.9

$$\overline{\mathbf{G}_1} + \overline{\mathbf{G}_2} \approx \langle 77.1, 91.9 \rangle + \langle 153.2, 128.6 \rangle$$

 $\approx \langle 230.3, 220.5 \rangle$

The net force on the stretcher is the magnitude of the sum.

$$|\overline{\mathbf{G}_1} + \overline{\mathbf{G}_2}| \approx \sqrt{(230.3)^2 + (220.5)^2}$$
 or about 319

The net force on the stretcher is about 319 Newtons.

.....

Example 4

Write \overline{AB} as the sum of unit vectors for A(3, -2) and B(7, 4).

First, write \overline{AB} as an ordered pair.

 $\overline{AB} = \langle 7 - 3, 4 - (-2) \rangle$ $= \langle 4, 6 \rangle$

Then write \overline{AB} as the sum of unit vectors. $\overline{AB} = 4\,\overline{\mathbf{i}} + 6\,\overline{\mathbf{j}}$

.....