Lesson 8-6 Vectors and Parametric Equations

Example 1

Write a vector equation describing a line passing through $P_1(3, 2)$ and parallel to $\bar{a} = \langle 4, -1 \rangle$.

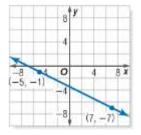
Let the line ℓ through $P_1(3, 2)$ be parallel to \mathbf{a} . For any point P(x, y) on ℓ , $\overline{P_1P} = \langle x - 3, y - 2 \rangle$. Since P_1P is on ℓ and is parallel to \mathbf{a} , $\overline{P_1P} = t\mathbf{a}$ for some value *t*. By substitution, we have $\langle x - 3, y - 2 \rangle = t \langle 4, -1 \rangle$.

Therefore, the equation $\langle x - 3, y - 2 \rangle = t \langle 4, -1 \rangle$ is a vector equation describing all of the points (x, y) on ℓ parallel to \mathbf{a} through $P_1(3, 2)$.

.....

.....

Example 2


Find the parametric equations for a line parallel to $\mathbf{q} = \langle 4, -2 \rangle$ and passing through the point at (-1, -3). Then make a table of values and graph the line.

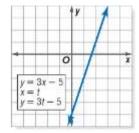
Use the general form of the parametric equations of a line with $\langle a_1, a_2 \rangle = \langle 4, -2 \rangle$ and $\langle x_1, y_1 \rangle = \langle -1, -3 \rangle$.

$x = x_1 + ta_1$	$y = y_1 + ta_2$
x = -1 + t(4)	y = -3 + t(-2)
x = -1 + 4t	y = -3 - 2t

Now make a table of values for *t*. Evaluate each expression to find values for *x* and *y*. Then graph the line.

t	X	У
-1	-5	-1
0	-1	-3
1	3	-5
2	7	-7

Example 3


Write parametric equations of y = 3x - 5.

In the equation y = 3x - 5, x is the independent variable, and y is the dependent variable. In parametric equations, t is the independent variable, and x and y are dependent variables. If we set the independent variables x and t equal, we can write two parametric equations in terms of t.

x = ty = 3t - 5

Parametric equations for the line are x = t and y = 3t - 5.

By making a table of values for *t* and evaluating each expression to find values of *x* and *y* and graphing the line, the parametric equations describe the same line as y = 3x - 5.

Example 4

CAR RACING Car #1 leaves the starting line at a speed of 60 mph. Two minutes later, car #2 leaves the starting line at a speed of 64 mph. They are racing for the next 400 miles. Use parametric equations to model the situation. Assume that both cars maintain a constant speed.

- a. How long is it until car #2 overtakes car #1?
- b. How far have both cars traveled when the second car overtakes the first car?
- **a.** First, write a set of parametric equations to represent each car's position at *t* hours. Car #1: x = 60t x = vtCar #2: x = 64(t - 0.0333) 2 minutes $\approx 0.0333 h$

Since the time at which the second car overtakes the first is when they have traveled the same distance, set the two expressions equal to each other.

 $60t \approx 64(t - 0.0333)$ $60t \approx 64t - 2.1312$ $2.1312 \approx 4t$ $0.5328 \approx t$

In about 0.5328 hour or 32 minutes, the second car overtakes the first.

b. Use the time to find the distance traveled when the cars pass.

x = 60t x = 60(0.5328)x = 31.968 or about 32 miles

The cars have traveled about 32 miles when the second car overtakes the first car.

.....

Example 5

Write an equation in slope-intercept form of the line whose parametric equations are x = 3 + 2t and y = -1 - 4t.

Solve each parametric equation for *t*.

x = 3 + 2t	y = -1 - 4t
x - 3 = 2t	y+1 = -4t
$\frac{x-3}{2} = t$	$\frac{-1-y}{4} = t$
2 = t	4 = t

Use substitution to write an equation for the line without the variable *t*.

$\frac{x-3}{2} = \frac{-1-y}{4}$	Substitution
4(x-3) = 2(-1-y)	Cross multiply.
4x - 12 = -2 - 2y	Simplify.
y = -2x + 5	Solve for y.