
Chapter 8

Lesson 8-8 Transformational Matrices in Three-Dimensional Space

Example 1

The vertices of a rectangular prism are given by A(4, 4, -4), B(4, -4, -4), C(4, -4, 2), D(4, 4, 2), E(-6, -4, 2), F(-6, 4, 2), G(-6, 4, -4), and H(-6, -4, -4). Represent these vertices in a vertex matrix. Then graph the rectangular prism.

Example 2

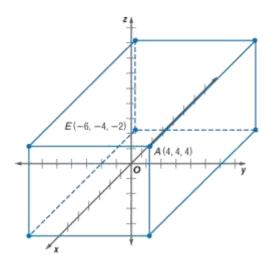
Bob needs to translate a prism using the vector $\mathbf{a} = \langle 2, 2, 0 \rangle$. The vertices of the prism have the following coordinates.

A(3, 2, -2)B(0, 0, -3)C(-1, 4, -3)D(-1, 4, 4)E(3, 2, 4)F(0, 0, 4)

- a. Write a matrix that will have such an effect on the figure.
- **b.** Find the coordinates of the vertices of the translated image.
- **a.** To translate the prism by the vector $\mathbf{a} = \langle 2, 2, 0 \rangle$, we must first add 2 to each of the *x* and *y* coordinates. The *z*-coordinates remain the same. The translation matrix can be written as

b. Write the vertices of the prism in a 6 (3 matrix. Then add it to the translation matrix to find the vertices of the translated image.

Original Matrix						+ Translation Matrix = Translated Image Matrix													
3	0	-1	-1	3	0		2	2	2	2	2	2]		5	2	1	1	5	2
2	0	4	4	2	0	+	2	2	2	2	2	2	=	4	2	6	6	4	2
-2	0 0 -3	-3	4	4	4		0	0	0	0	0	0		-2	-3	-3	4	4	4


Example 3

Let M represent the vertex matrix of the rectangular prism in Example 1.

a. Find *TM* if
$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- b. Graph the resulting image.
- c. Describe the transformation represented by matrix *T*.
- **a.** First find *TM*.

b. Then graph the points represented by the resulting matrix.

c. The transformation matrix T reflects the image of each vertex over the xy-plane. This results in a reflection of the prism when the new vertices are connected by segments.

.....